Abstract

We investigated the impact of excess oxygen on positive bias temperature stress (PBTS) instability of self-aligned coplanar amorphous InGaZnO thin-film transistors. We focus on the interface region which is compositionally differentiated from the bulk material on each side. The threshold voltage shift under PBTS is proportional to the extracted density of interface trap states that act as electron traps. The density of interface trap states is extracted from capacitance-voltage measurements with monochromatic light of varying wavelengths. We introduce a figure-of-merit that quantifies the amount of excess oxygen relative to the metal cation composition in the interface region. Minimization of interfacial excess oxygen from 112.4% to 101.2% reduces the density of interface trap states by a factor of 2.77, resulting in improvement of PBTS instability from a threshold voltage shift value of 4.42 V to 0.35 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call