Abstract

To study the strain hardening in nanoscale multilayer metallic (NMM) composites, atomistic simulations of nanoindentation are performed on CuNi, CuNb, and CuNiNb multilayers. The load-depth data were converted to hardness-strain data that were then modeled using power law. The plastic deformation of the multilayers is closely examined. It is found that the strain hardening in the incoherent CuNb and NiNb interfaces is stronger than the coherent CuNi interface. The hardening parameters are discovered to be closely related to the density of the dislocations in the incoherent interfaces, which in turn is found to have power law dependence on two length scales: indentation depth and layer thickness. Based on these results, a constitutive law for extracting strain hardening in NMM from nanoindentation data is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.