Abstract

The influence of interface barrier on field emission of carbon nanotubes (CNTs) was investigated theoretically and experimentally. A double-potential barrier model was proposed to calculate the electron tunneling probability through the interface and surface barriers. The calculation result reveals that the difference of the electron tunneling probability through the two barriers is responsible for the nonlinearity of the Fowler–Nordheim (FN) plots for the field emission of the CNTs. To verify this model, a series of the CNTs were synthesized on the Si substrates covered with different thicknesses of SiO2 layers as the interface barrier. Based on their field emission properties, it was found that the FN plots of the field emission of these CNTs deviated from the FN law when the applied electric fields were over a critical value, which was strongly dependent on the thicknesses of the SiO2 layer. Therefore, the interface barrier has an important role in determining the field emission property of the CNTs. The experimental results are consistent with the calculation result based on the double potential model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call