Abstract

The effects of interdiffusion and electrons' Coulomb interaction on the energy spectrum in Gaussian-shaped single and double quantum rings in the presence of magnetic field has been considered in the framework of exact diagonalization method. The one-electron energies as functions of magnetic field for different values of diffusion parameter have been obtained. The two-electron energies and electron probability density distributions are obtained as well. It is shown that the energy oscillations which are more pronounced for a single quantum ring, smooth out due to the interdiffusion. The Coulomb interaction transforms the crossings of the two-electron levels to anticrossings and can lead to the appearance of an additional level between the anticrossing levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.