Abstract

In this study, the numerical models are developed to investigate the influence of obstacle shape and number on performance of a planar porous membrane humidifier for proton exchange membrane fuel cell (PEMFC) application. Dew point of dry side outlet and water transfer rate are applied as evaluation parameters of the performance regardless of pressure drop. A dimensionless number named performance evaluation criteria (PEC) is calculated for all models. The higher value of PEC indicates the higher heat transfer rate with lower pressure drop. In humidifier with one rectangular obstacle compared with the simple humidifier, water transfer rate increases by 7.28%. The highest values of water transfer rate, dew point and PEC, also the greatest values of pressure drop are in humidifiers with rectangular, triangular and circular obstacles, in that order. When there is restriction in securing pumping power in fuel cell system, circular obstacle is the best choice. With considering the pressure drop, using one obstacle does not offer any advantage because the PEC is less than one (0.898). At least two obstacles are needed to have PEC number greater than one, consequently an efficient performance. An increment in number of obstacles causes an increment in water transfer rate, dew point and PEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call