Abstract
We report our numerical results on the stability of the skyrmion crystal phase in an external magnetic field for both in-plane and out-of-plane directions in a centrosymmetric host. We analyze a spin model with the two-spin symmetric anisotropic exchange interaction that arises from relativistic spin–orbit coupling on a triangular lattice. By performing simulated annealing, we construct magnetic phase diagrams when the magnetic field is tilted from the out-of-plane field direction to the in-plane field direction. We find a different stability tendency of the skyrmion crystal phase according to the directions of the in-plane field, which provides a signal of the two-spin symmetric anisotropic exchange interaction for stabilizing the skyrmion crystal phase. Our results indicate that the mechanism of the skyrmion crystal phase triggered by the two-spin symmetric anisotropic exchange interaction can be experimentally tested by applying the in-plane magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.