Abstract

The influence of initial texture on rollability is investigated using cuneal AZ31 Mg alloy sheets. Upon large thickness reduction, the sheet with initial basal texture has many edge cracks, whereas the sheet is crack-free if its normal direction is orthogonal to c-axis of hexagonal close packed (HCP) lattice. Microstructural analysis shows that the former one has heterogeneous grain structure owing to grain-boundary-related recrystallization, and by contrast the later one has a more uniform microstructure for the twin-related recrystallization. The initial nonbasal texture can lead to excellent rollability and anisotropic deformation, based on which a new iterative approach of rolling is proposed, which may achieve large reduction in few passes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.