Abstract

A full-scale geotextile-reinforced soil wall was built in order to assess the characteristics of water infiltration and its effect on the structure performance. Nonwoven geotextiles were selected as inclusions in order to provide not only reinforcement, but also internal drainage to the fine-grained soil used as backfill material. The structure was built in a laboratory setting, which facilitated implementation of a thorough instrumentation plan to measure volumetric water content changes of soil, suction, facing displacements and reinforcement strains. An irrigation system was used to simulate controlled rainfall events. The monitoring program allowed the evaluation of the advancement of infiltration and internal geosynthetic drainage. Evaluation of the effect of the hydraulic response on the overall performance of the structure included assessment of the development of capillary breaks at soil-geotextiles interfaces. Capillary breaks resulted in water storage above the geotextile reinforcements and led to retardation of the infiltration front in comparison to the infiltration that would occur without the presence of permeable reinforcements. After breakthrough, water was also found to migrate along the geotextiles, suggesting that the reinforcement layers ultimately provided in-plane drainage capacity. While generation of positive pore water pressures was not evidenced during the tests, the advancing infiltration front was found to affect the performance of the wall. Specifically, infiltration led to increasing reinforcement strains and facing displacements, as well as to the progressive loss of suction. While the accumulation of water due to the temporary capillary break also resulted in an increased backfill unit weight, its effect on deformation of the wall was not possible to be captured but it is intrinsic on the overall behavior observed in this study. Correlations between reinforcement strains/face displacement and the average of suction in the backfill soil, as measured by tensiometers in different locations within the backfill mass, point to the relevance of the suction as a representative indicator of the deformability of the geotextile-reinforced wall subjected to water infiltration. Reinforcement strains and face displacements were found to reduce more significantly with reduction of suction until a certain value of suction from which the rate of decreasing declines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.