Abstract
Sustainable solutions involving geosynthetic-reinforced soil walls have been achieved in projects that use locally available backfill materials and a reduced volume of geosynthetic reinforcements. Different arrangements of reinforcements can be adopted to reduce the volume of geosynthetics. This paper reports the deformation measurements taken from four instrumented geosynthetic-reinforced soil walls constructed with different arrangements of reinforcement layers including different lengths and tensile properties. The deformation of walls with rigid reinforcements at lower elevations and more flexible at upper portions of the wall height was compared to walls with a uniform distribution of reinforcement layers. Similarly, the effect of the nonuniformity of reinforcement lengths along the wall height was also evaluated. Relatively short reinforcements (L/H < 0.7) used at deeper reinforced layers were observed to overload the upper reinforcement layers resulting in mobilized loads higher than expected, resulting in increases of approximately 80% in the wall’s deformation. In contrast, the use of rigid reinforcements at lower layers led to a reduction in facing displacements of 50% at lower instrumented layers and of 60% at upper instrumented layers. The distribution pattern of facing displacements, reinforcement-mobilized loads and strains along the wall height was significantly affected by the adoption of heterogeneous reinforced layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.