Abstract

Water seepage affects dam stability and loss of water from reservoirs. Consequently, seepage is an important problem in the design, implementation, and operation of embankment dams. One type of embankment dam is a non-homogeneous (zoned) dam with a clay core. Water passes through the core of the dam and loses much of its energy due to friction. Zoned embankment dams can be designed and implemented with inclined or vertical cores. In this study, the performance of inclined and vertical cores are compared using numerical models to simulate the seepage and hydraulic gradients. Also, the Limit of Equilibrium Method is used to calculate slope stability. The permeability ratio of the dam shell to the clay core is a variable. The result of this study shows that seepage with a vertical core is less than that with an inclined core. Meanwhile, the factor of safety for upstream slope failure is higher (about 55.5%) for the embankment with an inclined core compared to the vertical core case. Also, comparisons were made using different methods to calculate the stability of the slope. The Bishop’s method showed the highest safety factor and the Fellenius’ method predicts the lowest safety factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.