Abstract

AbstractSand aging, defined by time-dependent increases in stiffness and strength over periods ranging from days to months, poses significant challenges in geotechnical engineering and soil science. Despite its relevant implications, the mechanisms driving sand aging remain understood. This review systematically examines sand aging, emphasizing the classification of chemical and mechanical processes involved. Key advancements in chemical aging understanding, particularly the influence of surface chemistry and electrokinetic forces, are discussed. Additionally, the review underscores the critical role of micromechanical modeling, especially discrete element methods, in elucidating particle interactions and aging phenomena. The review also identifies essential directions for future research, notably incorporating particle shape and surface texture into aging models. Hence, this comprehensive resource aims to enhance the understanding of sand aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.