Abstract

Electrochromism has emerged as a pivotal technology in the pursuit of energy efficiency and environmental sustainability, spurring significant research efforts aimed at the creation of advanced electrochromic devices. Most electrochromic materials are used for smart window applications. However, current electrochromic materials have been applied to new energy vehicles, cell phone back covers, AR glasses, and so on. More application scenarios put forward more requirements for the color of the colored states. Choosing the right color change in the application will be the trend in the future. In this work, tungsten trioxide (WO3) thin films were prepared by adjusting the in situ heating temperature. WO3 with a crystalline structure showed excellent cyclic stability (5000 cycles), electrochromic performance (ΔT = 77.7% at 633 nm, CE = 37.1 cm2/C), relatively fast bleaching/coloring speed (20.0 s/19.4 s), and the darkest coloring effect (L* = 29.32, a* = 7.41, b* = −22.12 for the colored state). These findings offer valuable insights into the manipulation of smart materials and devices, contributing to the advancement of electrochromic technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call