Abstract

Small Pt and Pt-Co nanoparticles (NPs) stabilized on La2O2CO3 nanorods (LOC) were prepared by wet impregnation method, and probed in liquid-phase chemoselective hydrogenation of crotonaldehyde (CRAL) to crotyl alcohol (CROL). It is found that incorporation of Co atoms into Pt catalyst significantly improves the hydrogenation activity and desired selectivity to CROL as it destroys the Pt-lanthanum interfaces and results into the formation of Pt-Co particles. In addition, a close examination of catalyst surface and reactive performance suggests that the impregnation sequence of Pt and Co exerts great influence on the physicochemical property and the catalytic hydrogenation behavior of PtCo/LOC catalysts. As a result of the interaction between Pt and Co species, high alloying degree of Pt-Co NPs is obtained in the co-impregnated catalyst (Pt-Co/LOC), thus achieving the highest hydrogenation activity. The selective deposit of Co atoms onto the low-coordinated Pt sites leads to the smallest metal particle size and high dispersion of Pt-Co NPs over the Pt/Co/LOC, giving rise to the highest selectivity and yield to CROL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.