Abstract

The effect of the reduction temperature has been studied on ceria-supported bimetallic platinum–zinc catalysts prepared from H 2PtCl 6 and Pt(NH 3) 4(NO 3) 2 as the platinum precursors and Zn(NO 3) 2 as the zinc precursor. The catalysts have been characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS), and their catalytic behavior has been evaluated in the vapor-phase hydrogenation of toluene and of crotonaldehyde (2-butenal) after reduction at low (473 K) and high (773 K) temperatures. The increase in the reduction temperature produces a strong decrease in the catalytic activity for toluene hydrogenation in both systems, but an important increase of activity for crotonaldehyde hydrogenation, which is more evident for the chlorine-free catalyst. The selectivity towards the hydrogenation of the carbonyl bond to yield the unsaturated alcohol (crotyl alcohol, 2-buten-1-ol) also increases after reduction at high temperature, being somewhat higher for the Cl-containing catalyst. The results are discussed in terms of differences in surface composition of the catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.