Abstract

Access to the brain to implant recording electrodes has conventionally required a craniotomy. To mitigate risks of open brain surgery, we previously developed a stent-electrode array that can be delivered to the cortex via cerebral vessels. Following implantation of a stent-electrode array (Stentrode) in a large animal model, we investigated the longevity of highquality signals, by measuring bandwidth in animals implanted for up to six months; no signal degradation was observed. We also investigated whether bandwidth was influenced by implant location with respect to the superior sagittal sinus and branching cortical veins; it was not. Finally, we assessed whether electrode orientation had an impact on recording quality. There was no significant difference in bandwidths from electrodes facing different orientations. Interestingly, electrodes facing the skull (180°) were still able to record neural information with high fidelity. Consequently, a minimally invasive surgical approach combined with a stent-electrode array is a safe and efficacious technique to acquire neural signals over a chronic duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.