Abstract

Hypoxia and hypoxia/reoxygenation are known to affect vascular smooth muscle cell physiology. In this study, we first investigated proteoglycan synthesis by human aortic smooth muscle cells exposed to normoxia, hypoxia, or hypoxia/reoxygenation. We then compared the newly synthesized proteoglycans from normoxic and hypoxic-reoxygenation cultures for their ability to bind low density lipoprotein (LDL). Confluent smooth muscle cells under normoxia, hypoxia, or hypoxia/reoxygenation were pulsed with [ 35S]sulfate, and secreted and cell-associated proteoglycans were analyzed. Secreted proteoglycans in cultures exposed to hypoxia (4 h)/reoxygenation (19 h) increased 28% over those of cells continuously exposed to normoxia. Cell-associated proteoglycans did not differ significantly between the two groups. In contrast, hypoxia (4 h) followed by a 30-min reoxygenation produced a 37% decrease in newly synthesized proteoglycans. Hypoxia alone also resulted in a 24% decrease in secreted proteoglycans and a 20% decrease in cell-associated proteoglycans. Proteoglycans newly synthesized by smooth muscle cells exposed to normoxia and hypoxia/reoxygenation did not differ in their charge densities and molecular size but did differ in glycosaminoglycan composition. Exposure of smooth muscle cells to hypoxia/reoxygenation produced a 60% increase in a proteoglycan subfraction that bound LDL with very high affinity. The incorporation of [ 3H]leucine into total cellular protein decreased significantly following exposure of smooth muscle cells to hypoxia as well as hypoxia/reoxygenation. These results indicate that hypoxia and hypoxia/reoxygenation cause major alterations in proteoglycan metabolism by vascular smooth muscle cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call