Abstract

In this work, structurally similar, (E)-N'-(2-hydroxybenzylidene)-3,5-di-tert-butyl-2-hydroxybenzohydrazide (A) and (E)-N'-(2-4-dihydroxybenzylidene)-3,5-di-tert-butyl-2-hydroxybenzohydrazide (A-OH) dyes dissolved in general solvents have been studied to explore photo-physical properties, employing solvatochromic shift method, thereby determining their dipole moments in the ground (μg) and excited (μe) states. The molecule A shows a bathochromic shift of fluorescence emission maxima in aprotic solvents whereas a hypsochromic shift in protic solvents. Interestingly, A-OH follows a hypsochromic shift in both protic and aprotic solvents with increasing solvent polarity. The effect of hydroxyl substituent on UV-Visible absorption, fluorescence emission, and dipole moment of the titled organic molecules was explained. Theoretical methods such as Bilot-Kawski method for determination of μg and μe and Bakshiev, Kawski-Chamma-Viallet, Lippert-Mataga equations for μe, and Reichardt method for the difference between μg and μe were employed. It is observed that μe is higher than that of μg for both the molecules, and interestingly, upon substituting an additional hydroxyl group the value of μg has increased while μe is decreased. The DFT calculations have been performed to support experimental results by employing DFT/B3LYP/6-311G + (d) and TD-DFT/B3LYP/6-311G + (d) method using Gaussian09 software. The electrophilic and nucleophilic sites on the molecules were studied with the help of MEP. The NBO analysis results show that the interaction N24 (σ) → C22-O23 (π*) is found to be stronger in both the molecules with energy 68.90kJ/mol and the effect of hydroxyl group is also discussed on the basis of HOMO and LUMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.