Abstract
In this paper, an analytical model is developed to study the influence of initial hydrostatic stress and piezoelasticity on elastic waves in a thermopiezoelectric layer embedded on a gravitating half space with slip interface. The thermopiezoelectric layer considered for this study is hexagonal (6 mm) material. The problem is described using equations of linear elasticity with initial hydrostatic stress and piezothermoelastic inclusions. Displacement functions in terms of velocity potential are introduced to separate the motion’s equations, heat and electric conduction equations. The frequency equations are obtained by stress-free, insulated thermal and electrically shorted boundary conditions at the gravitating half space. The numerical computation is carried out for the PZT-4A material. The obtained results are presented graphically to show the effect of piezoelastic coupling and hydrostatic stress on the elastic waves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have