Abstract
The properties of silicon-on-insulator films implanted with high hydrogen-ion doses (∼50 at %) and annealed under a pressure of 10.5 kbar are studied using the Raman scattering (RS) method. A high degree of optical-phonon localization is detected in the films under study, which is retained to an annealing temperature of ∼1000°C and is explained by the formation of silicon nanocrystals. It is found that the activation energy of annealing of the structural relaxation of dangling bonds in films with a high hydrogen content is independent of the annealing pressure. The activation energy of growth of the crystalline phase, calculated from RS spectra is ∼1.5 eV and is independent of pressure. The effect of hydrostatic pressure consists only in a decrease in the frequency factor limiting Si-Si bond relaxation during ordering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.