Abstract
In the plasma membranes, many transmembrane (TM) proteins/peptides are anchored to the underlying cytoskeleton and/or the extracellular matrix. The lateral diffusion and the tilt of these proteins/peptides may be greatly restricted by the anchoring. Here, using the coarse-grained molecular dynamics simulation, we investigated the domain formation and peptide sorting in the ternary lipid bilayers in the presence of the immobilized peptide-grid and peptide-cluster. We mainly focused on examining the combining effect of the peptide immobilization and hydrophobic mismatch on the domain formation and peptide sorting in the lipid bilayers. Compared to the lipid bilayers inserted with free TM peptides, our results showed that, because of the tilt restriction imposed on the peptides, the hydrophobic mismatch effect more significantly influences the domain size, the dynamics of domain formation, and the peptide sorting in our systems. Our results provide some theoretical insights into understanding the formation of nanosized lipid rafts, the protein sorting in the lipid rafts and the interaction between the cytoskeleton, the extracellular matrix, and the plasma membranes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have