Abstract

In this study, effect of hydrolysis in simulated body environment on mechanical behavior oftricalcium phosphate (TCP)/Poly(L-lactic acid) (PLLA) composites were analytically characterized.In order to predict stress-strain behavior after hydrolysis, damage micromechanical analysis proposedby the authors were utilized. In this model, nonlinear behavior in stress strain relationship weresimulated considering interfacial debonding between TCP particle and PLLA matrix. For the purposeof deciding the interfacial strength, such as critical energy release rate, curve fitting was conducted onthe result of the composites with 15wt% TCP content. Theoretical results on 5wt% and 10wt%composites using the interfacial strength obtained were in good agreement with experimental results.This result indicated that interfacial strength was independent from TCP fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call