Abstract

Surfaces of n-InP treated with remote hydrogen plasma have been analyzed in terms of X-ray photoelectron spectroscopy (XPS), Kelvin probe, current-voltage characteristics of Schottky barrier junctions and isothermal capacitance transient spectroscopy (ICTS). It is confirmed by XPS analysis that the native oxide is removed from the InP surface by the \\H2-plasma treatment. Schottky junctions formed by in situ evaporation of various metals immediately after the remote \\H2-plasma exposure show that the barrier height is pinned at about 0.5 eV, irrespective of Schottky metal. This value is somewhat higher than the barrier height of 0.4 eV for untreated surfaces. It is observed by Kelvin probe measurement that the Fermi level shifts to an energy around 0.53 eV below the conduction band edge upon \\H2-plasma treatment from 0.39 eV for an untreated surface. Furthermore, a deep trap level with the activation energy of 0.51 eV below the conduction band edge was detected for samples treated with \\H2 plasma by ICTS measurement. The pinned behavior of the Schottky barrier height is speculated to be related to the trap level generated by \\H2-plasma treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.