Abstract

1. We used intact single fibres from a mouse foot muscle to study the role of oxidation-reduction in the modulation of contractile function. 2. The oxidant hydrogen peroxide (H2O2, 100-300 microM) for brief periods did not change myoplasmic Ca2+ concentrations ([Ca2+]i) during submaximal tetani. However, force increased by 27 % during the same contractions. 3. The effects of H2O2 were time dependent. Prolonged exposures resulted in increased resting and tetanic [Ca2+]i, while force was significantly diminished. The force decline was mainly due to reduced myofibrillar Ca2+ sensitivity. There was also evidence of altered sarcoplasmic reticulum (SR) function: passive Ca2+ leak was increased and Ca2+ uptake was decreased. 4. The reductant dithiothreitol (DTT, 0.5-1 mM) did not change tetanic [Ca2+]i, but decreased force by over 40 %. This was completely reversed by subsequent incubations with H2O2. The force decline induced by prolonged exposure to H2O2 was reversed by subsequent exposure to DTT. 5. These results show that the elements of the contractile machinery are differentially responsive to changes in the oxidation-reduction balance of the muscle fibres. Myofibrillar Ca2+ sensitivity appears to be especially susceptible, while the SR functions (Ca2+ leak and uptake) are less so.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.