Abstract

The tensile properties and fracture behavior of PH 13-8 Mo steel after subjected to pre-charged hydrogen were investigated by slow strain rate tensile tests. The results suggest that hydrogen slightly increases yield strength, while decreases tensile strength. The susceptibility to hydrogen embrittlement of specimens aged at 650°C firstly reduces and then increases as the aging time increases, reaching the lowest value at aging time 4h. This is dominantly attributed to the highest content of austenite. Moreover, hydrogen-induced crack nucleation sites initiate from lath, packet and prior austenite grain boundaries. Crack propagation passes through lath boundaries and walks along packet, prior austenite grain boundaries. Scanning electron microscopy result indicates that hydrogen-charged specimens show quasi-cleavage fracture and intergranular fracture in annular brittle zone while dimple fracture is observed in hydrogen-free specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.