Abstract

The preferential site, segregation and embrittlement properties of hydrogen (H) in a vanadium (V) Σ3 (111) [110] grain boundary (GB) were investigated by first-principles calculations. The solution and segregation energy of H at different interstitial and substitutional sites are calculated. Energetically, H prefers to occupy the GB space rather than substitutional sites and can segregate to the GB with segregation energy of −0.08 eV. Hydrogen is an embrittler at the GB by producing an embrittlement energy of about 0.41 eV, in agreement with experimental observations. Charge density distributions indicate that there are no strong chemical bonds between an H atom and the adjacent V atoms in the GB, and the presence of H atom weakens the bond strength between surrounding V atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.