Abstract

The yield strength, ultimate strength, and elongation/ductility properties of a series of palladium-copper alloys were characterized as a function of the temperature at which each alloy underwent absorption and desorption of hydrogen. The alloys studied ranged in copper content from 5 weight percent copper to 25 wt.% copper. Compared to alloy specimens that had been well-annealed in a vacuum and never exposed to hydrogen, alloys with copper content up to 15 wt.% showed strengthening and loss of ductility due to hydrogen exposure. In these alloys, it was found that the degree of strengthening and loss of ductility was dependent on the hydrogen exposure temperature, though this dependence decreased as the copper content of the alloy increased. For alloys with copper contents greater than 15 wt.%, hydrogen exposure had no discernible effect on the strength and ductility properties compared to the vacuum-annealed alloys, over the entire temperature range studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call