Abstract
Low alloy steels combine relatively low cost with exceptional mechanical properties, making them commonplace in oil and gas equipment. However, their strength and hardness are restricted for sour environments to prevent different forms of hydrogen embrittlement. Materials used in sour services are regulated by the ISO 15156-2 standard, which imposes a maximum hardness of 250 HV (22 HRC) and allows up to 1.0 wt% Ni additions due to hydrogen embrittlement concerns. Low alloy steels that exceed the ISO 15156-2 limit have to be qualified for service, lowering their commercial appeal. As a result, high-performing, usually high-nickel, low alloy steels used successfully in other industries are rarely considered for sour service. In this work, the hydrogen stress cracking resistance of the high-nickel (3.41 wt%), quenched and tempered, nuclear-grade ASTM A508 Gr.4N low alloy steel was investigated using slow strain rate testing as a function of applied cathodic potential. Results showed that the yield strength and ultimate tensile strength were unaffected by hydrogen, even at a high negative potential of −2.00 VAg/AgCl. Hydrogen embrittlement effects were observed once the material started necking, manifested by a loss in ductility with increasing applied cathodic potentials. Indeed, A508 Gr.4N was less affected by hydrogen at high cathodic potentials than a low-strength (yield strength = 340 MPa) ferritic-pearlitic low alloy steel of similar nickel content. Additionally, hydrogen diffusivity was measured using the hydrogen permeation test. The calculated hydrogen diffusion coefficient of the ASTM A508 Gr.4N was two orders of magnitude smaller when compared to that of ferritic-pearlitic steels. Hydrogen embrittlement and diffusion results were linked to the microstructure features. The microstructure consisted of a bainitic/martensitic matrix with the presence of Cr23C6 carbides as well as Mo- and V-rich precipitates, which might have played a role in retarding hydrogen diffusion, kept responsible for the improved HE resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.