Abstract

The effect of the dilution of silane and nitrogen with hydrogen on the optical properties of hydrogenated amorphous silicon-nitrogen films prepared by plasma deposition has been investigated as functions of the gas-volume ratio γ (= ([SiH4] + [N2])/([SiH4] + [N2] + [H2]) and the substrate temperature. The prepared films are characterized by the values of the deposition rate, the optical gap, the Urbach energy, the defect density, the integrated infrared absorption intensity and the refractive index, and by correlations between these parameters and the type of hydrogen- and nitrogen-bonding configurations estimated from infrared absorption spectra. The hydrogen dilution effect is discussed in terms of the above and compared with that in hydrogenated amorphous silicon reported in a previous paper by the present authors. It is pointed out that nitrogen atoms incorporated into the silicon network cause more disorder than incorporated hydrogen atoms, from the γ dependence of the Urbach energy and the integrated infrared intensities associated with the hydrogen and nitrogen bondings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.