Abstract

The influence of the hydrogen bond formation on the nuclear magnetic resonance parameters has been investigated in the case of microhydrated ortho-aminobenzoic acid (o-Abz) in the gas-phase. DFT-B3LYP/aug-cc-pVDZ predicted 1H and 13C isotropic chemical shifts with respect to TMS of the isolated o-Abz are in reasonable agreement with available experimental data. The isotropic and anisotropic chemical shifts for all atoms of o-Abz within the o-Abz ··· (H2O)1-3 complexes have been calculated at the Hartree–Fock, and density functional (B3LYP) theoretical levels using the 6-31++G(2d,2p) and aug-cc-pVDZ basis sets and considering the counterpoise corrections for the basis set superposition errors. The chemical shift values of the carboxyl group atoms of microhydrated o-Abz relative to isolated o-abz do not show significant basis set dependence. Both the hydrogen and carbon atoms constituting the carboxyl group of o-Abz suffer downfield shift due to formation of hydrogen bond with water. The length of hydrogen bond formed between o-Abz and water is found to vary with the number of water molecules present around o-Abz. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed for both C = O ··· H-O and O-H ··· O interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call