Abstract

Mechanical cake dewatering is always desired to reduce the load on thermal dewatering (drying). Any change in the upstream process such as crystallization can have a significant influence on the filtration as well as cake dewatering characteristics. The present study deals with the effect of hydrodynamics (mixing intensity) during salicylic acid crystallization on the air dewatering characteristics in the subsequent pressure filtration. The mixing conditions during crystallization were varied by using three different types of agitators (anchor impeller [AI], curved blade turbine [CBT], and bar turbine [BT]) and by varying the speed of agitation. The effect of operating pressure and dewatering time on the final moisture content of the cake was also studied. The crystal properties (crystal size and size distribution) were found to vary with the mixing intensity, which further influenced the cake dewatering kinetics as well as the residual moisture content. An AI, which is a laminar flow impeller, produced crystals with a wide size distribution and higher mean particle size, which resulted in cake with high porosity and hence higher moisture content. The high porosity (as well as high cake permeability) caused early air breakthrough, which resulted in ineffective dewatering of cake. Therefore, in this case the residual moisture in cake was found to be higher (27%) even at higher dewatering pressure (1.5 bar gauge) and longer dewatering time (90 s). A BT creates high turbulence during mixing and produced crystals with a relatively narrow size distribution and lower mean particle size, which provided low-porosity cakes. Such cakes could be efficiently dewatered and the final cake moisture content was found to decrease to about 15%, a significant improvement in the filterability of the cake. The dewatering data were modeled according to the correlation between irreducible cake saturation and capillary number for predicting the cake dewatering characteristics (residual moisture as well as dewatering kinetics) and the results were compared with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call