Abstract

Intramolecular hydrodynamic interactions (HI) in flexible polymer chains influence both the equilibrium and nonequilibrium physical properties of macromoecules. In this work, we utilize a combination of single molecule experimental techniques and Brownian dynamics (BD) simulation to investigate the role of HI and excluded-volume (EV) interactions for DNA molecules ranging in contour length from 150 to 1300 μm. Epifluorescence microscopy is used to directly observe the dynamics of DNA molecules in planar extensional flow, and a semiimplicit bead−spring BD algorithm with fluctuating HI and EV interactions is presented. Quantitatitative agreement between ensemble average transient molecular extension in experiment and BD simulation is shown for DNA with 150 μm contour length. Simulations show polymer conformation hysteresis for larger DNA chains (1300 μm in length) when HI and EV parameters are chosen such that simulation results match the experimental polymer relaxation time and polymer stretch at flow stre...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.