Abstract

SummaryTwo levels of humidity, high, 0.1 kPa vapour pressure deficit (vpd) and control 0.5 kPa vpd, and four nutrient feed K/Ca mM ratios (4/7, 10/7, 4/2 and 10/2) were applied in all factorial combinations to a nine-week old tomato (Lycopersicon esculentum Mill.) crop for 63 d. The effect on gas exchange, water relations, vegetative growth, yield and accumulation of Ca and K in the shoot was examined. High humidity had a deleterious effect on leaf expansion, delayed truss and fruit maturity and reduced fruit yield. Water uptake was reduced and the Ca concentration of leaf and fruit tissue was increased under high humidity compared with plants grown under control humidity; K accumulation was unaffected. The accumulation of K and Ca in the shoot appeared to be poorly related to the rate of transpiration. The high (10/2 mM) K/Ca ratio nutrient feed had little effect on vegetative growth and yield compared with the low (4/7 mM), but restricted Ca uptake to the fruits at both the high and the control humidity. During the measurement period, 0900–1300 hours, stomatal conductance and leaf water status remained high at elevated humidity, compared with a progressive reduction in leaf water status and low stomatal conductance in the control humidity. A/ci gas exchange analysis where A is the net CO2 assimilation rate and ci is the intercellular partial pressure of CO2 suggested that, at high humidity, the photosynthetic capacity of the leaves was reduced because of a lower in vivo carboxylation efficiency. However, the mechanism(s) responsible for reduced leaf expansion remains unclear. The complex interrelations between physiological responses, leaf expansion and the uptake and distribution of K and Ca to the shoot, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call