Abstract

The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call