Abstract

Abstract Turbine blades are flight safety parts in the jet engine. Therefore they should be characterized by very good mechanical properties, especially high creep resistance and fatigue strength at high temperature. The mechanical properties of blades made of nickel-based superalloys depend on the microstructure of the casting and its porosity [1,2]. The aim of this paper is evaluation of effect of hot isostatic pressing (HIP) on microstructure of blade airfoil made of IN713C superalloy in four important zones: (i) leading edge, (ii) trailing edge, (iii) suction side and (iv) pressure side. HIP treatment was carried out proving some significant microstructural changes. Electron backscatter diffraction (EBSD) analysis reveals some structural changes what may facilitate diffusion processes leading to simplify of a heat treatment (solution treatment and aging).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.