Abstract

Purpose – The aim of this paper was to investigate the effect of strain rate on microstructure and corrosion behavior of 2205 duplex stainless steel, after high-temperature compression tests. Design/methodology/approach – The specimens were prepared using a Gleeble3800 thermo-simulation machine over a range of temperatures from 850 to 1,250°C and strain rates from 0.005 to 5 s−1, and the corresponding flow curves and deformation microstructure obtained were further analyzed. To evaluate the effect of strain rate on corrosion behavior, potentiodynamic polarization tests and double-loop electrochemical potentiodynamic reactivation (DL-EPR) were used to characterize the electrochemical performance. Findings – Compared with strain rate of 0.5 s−1, the worst corrosion resistance behavior from the potentiodynamic polarization test results after deformation at 0.005 s−1 was attributed to more austenite (γ) and ferrite (δ) grain boundaries or δ/γ phase interface formation due to the better effect of γ dynamic recrystallization (DRX) or δ dynamic recovery (DRV). Increasing strain rate to 5 s−1 lowered the corrosion resistance, due to the increase in dislocation density. At the low strain rate of 0.005 s−1, the susceptibility to intergranular corrosion (IGC) was comparatively high after deformation at 1050 and 1150°C with more γ/γ grains and δ/γ phase boundary formation, which was lowered with the strain rate increase to 0.5 s−1, due to suppressing effect of γ DRX. Originality/value – The paper provides the scientific basis for the practical application of hot working of 2205 duplex stainless steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.