Abstract

This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs around 400 °C, HPT can induce the precipitation of solute atoms even at room temperature. Furthermore, the temperature at which HPT is performed significantly influences the behavior of the precipitated phase during subsequent aging, ultimately affecting the alloy's overall properties. At elevated temperatures (ETs) and room temperature (RT), Cr atoms tend to aggregate, forming Guinier-Preston (GP) zones or precipitates, which coarsen into incoherent precipitates after annealing. In contrast, when HPT is conducted at liquid nitrogen temperature (LNT), Cr atoms are retained in their original positions, leading to the formation of uniformly distributed, high-density small precipitates post-annealing. This phenomenon results in superior properties for HPT-LNT-treated samples, evidenced by a microhardness of 191.8 ± 3.2 HV and an electrical conductivity of 84.6 ± 1.8% IACS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.