Abstract

Titanium alloys are referred to difficult-to-cut materials because of its some inferior properties like low thermal conductivity and high chemical reactivity. To improve machinability of these alloys one way is to use cutting fluids which removes the heat generated at the chip tool interface during the machining process. But coolant with low pressure and improper delivery is not able to break the vapor barrier created by high cutting temperature. The present work investigates the effect of using high pressure coolant system (50 Bar) on machinability of Ti6Al4V. The machinability was measured in terms of tool wear. The dominant tool wear mechanism was investigated by using scanning electron microscopy and energy dispersive X-ray analysis of worn out cutting tool surfaces. Abrasion wear on flank face and crater wear on the rake face was observed as a dominant tool wear mechanism. Along with this diffusion of titanium from the work surface to tool face is also confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call