Abstract

Tartary buckwheat is rich in flavonoids and starch, and the interaction between these two components affects the structural and digestive properties of the food product. In this study, we analyze the effects of thermal gelatinization (GT), ultrasonic treatment (UT), and high hydrostatic pressure treatment (HHP) on the compounding degree of starch and flavonoids in Tartary buckwheat and on the properties of the starch/flavonoid complex system (HBS-BF). Based on scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses, the surface of HBS-BF becomes rough after GT or UT, and many small cavities appear. Comparatively, HHP treatment is less damaging to HBS-BF. Moreover, HHP maintains the original A-type crystal morphology of buckwheat starch in HBS-BF, whereas GT and UT change to V-type. Repeated HHP further improves the crystallinity and digestion resistance of HBS-BF. According to the recorded Fourier transform infrared (FT-IR) spectra, HBS-BF by different methods does not exhibit new covalent bonds.Practical application: The results reported herein promote the application of Tartary buckwheat starch and flavonoids in the food industry by providing a theoretical basis for the development of starch anti-digestion mechanisms and the preparation of resistant starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call