Abstract

Excessive production of mucus results in plugging of the airway tract, which can increase morbidity and mortality in affected patients. In patients with diabetes, inflammatory airway disease appears with more frequent relapse and longer duration of symptoms. However, the effects of high glucose (HG) on the secretion of mucin in inflammatory respiratory diseases are not clear. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of HG on MUC5B expression in human airway epithelial cells. The effect and signaling pathway of HG on MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA. HG increased MUC5B expression and epidermal growth factor receptor (EGFR) expression, and activated the phosphorylation of EGFR and p38 mitogen-activated protein kinase (MAPK). Pretreatment with EGFR inhibitor significantly attenuated the HG-induced phosphorylation of p38 MAPK, and pretreatments with p38 inhibitor or EGFR inhibitor significantly attenuated HG-induced MUC5B expression. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked HG-induced MUC5B expression. These findings suggest that HG induces MUC5B expression via the sequential activations of the EGFR/p38 MAPK signaling pathway in human airway epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.