Abstract

Abstract Failure mechanisms of rock are intrinsically intertwined with heterogeneity and natural fracture. However, the effects of heterogeneity on the failure of rock with natural cracks are still far from clear. By simultaneously considering rock heterogeneity and natural fractures, this paper investigated the effects of heterogeneity on the failure of rock with a single initial crack under uniaxial compressions. The RFPA method with consideration of materials properties heterogeneity was employed, and numerical models with different crack angles were developed. The stress-strain curve, crack development, failure pattern, and AE characteristics were obtained. The numerical results were also compared with experimental results. Further, the effects of initial crack angle and heterogeneity on the strength, failure pattern, and acoustic emission (AE) characteristics were investigated by parametric studies. It has been found that, for a small homogeneity, rock failure is dominated by numerous microcracks within the crack bands that are smeared from the initial crack tips to the loading ends. Rock failure is dominated by macrocracks propagated from the initial crack tips to the loading ends for a large homogeneity. A logarithmic function is proposed to describe the relationship between the uniaxial compressive strength and the homogeneity. The AE characteristics and overall damage evolution are also significantly affected by the heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call