Abstract

The hydrolysis of the iron nitrosyl complex [Fe2(μ2-SC4H3N2)2(NO)4](C4H3N2S− is pyrimidine-2-thiolate) in the presence of hemoglobin (Hb) is accompanied by the NO release into a solution. In the absence of Hb, the starting complex is oxidized by nitric oxide that is released into a solution, which leads to further transformations of NO, nitric oxide being present in the solution only partially. The effective rate constant for the decomposition of the complex is high and depends on its concentration. On the one hand, in the presence of Hb, NO molecules rapidly and irreversibly bind to Hb to form HbNO, which is the intermediate in the nitric oxide metabolism. On the other hand, the reversible binding of the iron nitrosyl complex to the surface functional groups of Hb leads to a decrease in its concentration in a solution and deceleration of the formation of NO. Therefore, Hb can ensure the complete and more prolonged assimilation of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.