Abstract

Deoxyhemoglobin (Hb) stabilizes the cationic nitrosyl iron complex with cysteamine {Fe2[S(CH2)2NH3]2(NO)4}SO4·2.5H2O (CysAm), by slowing down its hydrolysis. In the absence of Hb, the electrochemical detection of NO release in the course of the hydrolysis using a sensor electrode gave the rate constant of (5.2±0.2)·10−5 s−1. The release of NO is a reversible process, and the amount of released NO is 1.4% of the CysAm concentration. In the presence of Hb, NO is released much more slowly, and the reaction is more intense than that in the absence of Hb. The adsorption of CysAm by an Hb molecule results in NO release from the CysAm-Hb complex with a rate constant of 1·10−8 s−1. The analysis of the Hb surface revealed the possible location of the cation-binding sites, which reversibly bind the cationic CysAm complex. The kinetic parameters of NO release from CysAm in the absence and in the presence of Hb were studied by the kinetic modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.