Abstract
In a repository, the release of radionuclides from spent fuel rods will strongly depend on the pellet microstructure existing when water comes into contact with the spent fuel surface, i.e. after 10,000 years of disposal. During this period, a large quantity of He atoms is produced by α-disintegrations of actinides in the spent fuel. A conservative model is proposed here to evaluate the consequences of He on the spent fuel microstructure. According to the solubility and diffusion properties of He under repository conditions, two scenarios are considered: He atoms can be trapped in fission gas bubbles or form new bubbles. In spite of the conservative assumptions of the model, the calculated values of bubble or pore pressure are much lower than critical values derived from rupture criteria. No evolution of the microstructure of the spent UO 2 fuel is thus expected before the breaching of the canister.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.