Abstract

Arginine (Arg)-rich peptides are one of the typical cell-penetrating peptides (CPPs), which can deliver membrane-impermeable compounds into intracellular compartments. Guanidino groups in Arg-rich peptides are critical for their high cell-penetrating ability, although it remains unclear whether peptide secondary structures contribute to this ability. In the current study, we designed four Arg-rich peptides containing α,α-disubstituted α-amino acids (dAAs), which prefer to adopt a helical structure. The four dAA-containing peptides adopted slightly different peptide secondary structures, from a random structure to a helical structure, with different hydrophobicities. In these peptides, dipropylglycine-containing peptide exhibited the highest helicity and hydrophobicity, and showed the best cell-penetrating ability. These findings suggested that the helicity and hydrophobicity of Arg-rich peptides contributes to their high cell-penetrating ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call