Abstract

In the delivery of cell-impermeable molecules, cell-penetrating peptides (CPPs) have been attracting increasing attention as intracellular delivery tools. In the present study, we designed four types of cyclic α,α-disubstituted α-amino acids (dAAs) with basic functional groups on their five-membered rings and different chiralities at the α-position and introduced them into arginine (Arg)-rich peptides. The evaluation of cell-penetrating abilities indicated that these peptides exhibited better cell permeabilities than an Arg nonapeptide. Furthermore, peptides containing dAAs delivered plasmid DNA (pDNA) better than a commercially available transfection reagent with a longer incubation time. These results demonstrate that the introduction of cyclic dAAs with basic functional groups into Arg-rich peptides is an effective strategy for the design of CPPs as a pDNA delivery tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call