Abstract

The microstructural features that influenced the fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination revealed that operative fatigue mechanisms were dependent on microstructure, temperature and stress intensity factor. All specimens exhibited three basic fracture surface morphologies at temperatures up to 538°C: crystallographic faceting at low stress intensity range (ΔK) levels, striation formation at intermediate values, and dimples coupled with striations in the highest ΔK regime. At 649°C, extensive amounts of intergranular cracking were observed. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused an overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material were attributed to compressive residual stresses introduced by the welding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.