Abstract

Here, we investigated the influence of δ-precipitate (orthorhombic D0a Ni<sub>3</sub>Nb-ordered phase) on the room- and high-temperature tensile properties in wrought nickel-based Inconel 625 superalloys subjected to solution and aging heat treatment. Typically, solution heat-treatment temperatures in these alloys affect the solid-state precipitation of δ-phase, which governs high-temperature tensile properties. While precipitation of fine D0<sub>a</sub> δ-phase is known to have beneficial effects on the mechanical properties owing to the retardation of grain coarsening, Widmanstätten δ precipitation plays a deleterious influence on the fracture toughness, tensile ductility, and fatigue resistance. Therefore, to enhance the mechanical properties of this alloy series, it is key to generate a high number density of fine D0<sub>a</sub> δ precipitate by adjusting solid solution treatment temperatures. In this study, solution heat treatments were conducted above and below δ-phase solvus temperatures. By applying solution heat treatment at 900°C and 970°C, this alloy was confirmed to have a Widmanstätten δ phase and is composed similarly to the annealed microstructure. This Widmanstätten δ precipitate was densely distributed at both intergranular and intragranular grains. On the other hand, when solution treatment was applied at 1040 and 1100°C, more coarse particles (approximately 30 μm) with a significant reduction of Widmanstätten type δ phase were obtained. We found that grain size and Widmanstätten δ-phases have an important role in the high-temperature tensile properties of Inconel 625 superalloy series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call