Abstract

Bulk metallic glasses (BMGs) are an important class of materials with unique set of properties. A bulk metallic glass with composition of (Fe0.6Co0.4)71Nb4Si5B20 was cast in the form of a 1 mm thick strip in a water cooled copper mold. The BMG produced was characterized for structure, thermal and mechanical properties. The X-ray diffraction performed on the as cast alloy has shown completely amorphous structure. The glass transition and crystallization peak temperatures obtained through differential scanning calorimetry scan were 542 °C and 588.4 °C, respectively. Some cast amorphous alloy sample was annealed below glass transition (450 °C for 30 mi93nutes) and others above glass transition (580 °C for 5 minutes) temperatures. Nano- indentation hardness of 13.3 GPa was obtained for as cast alloy while a hardness values of 12.8 and 15.84 GPa were measured for heat treated alloys at temperature of 450 °C and 580 °C, respectively. Increase in hardness was attributed to formation of crystals in an amorphous matrix whereas decrease in hardness was due to relaxation of quenching residual stresses. The maximum value of elastic modulus obtained through indentation was 255 GPa for 580 °C heat treated sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call