Abstract

AbstractHeat stress during grain development adversely affects the starch content of grain in wheat, which results in poor grain quality and yield. Identification of the sources of heat tolerance for grain starch content in wheat species is an important step towards breeding for heat‐tolerant wheat. In this study, 32 wild and cultivated genotypes belonging to diploid (probable donors of B, A and D genomes), tetraploid (BBAA and AAGG genomes) and hexaploid (BBAADD genome) wheat species were evaluated for heat stress tolerance in the field at the Indian Agricultural Research Institute (IARI), New Delhi, India (77°12′ E; 28°40′ N; 228.6 m m.s.l) on two dates, 18 November (normal sowing) and 15 January (heat stress), during 1995–96. The crop sown in January experienced mean maximum temperatures of 31.0–39.3 °C during grain development, which are considered to represent heat stress for wheat grain development. Hexaploids had the highest grain starch content and the lowest heat susceptibility index, followed by tetraploid and diploid species. The heat susceptibility index (S) for grain starch correlated significantly and positively with that of grain weight (Y = 1.259X − 0.29, R2 = 0.8902, P < 0.001) across wheat species, while the actual grain growth duration or the ‘S’ of grain growth duration did not correlate significantly with that of grain weight. Hence, a high mean grain growth rate under heat stress is a better trait for heat tolerance than long grain growth duration. Wide genetic variability for heat tolerance in grain starch content was observed among the wheat species. Hence, the grain weight and quality under heat stress can be improved by using the variability available among wheat species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call