Abstract
The phase equilibria, hydration, and sodium counterion association for the systems DOPA-2H2O, DOPS-2H2O, DOPG-2H2O, and DPG-2H2O were investigated with 2H, 23Na, and 31P NMR and X-ray diffraction. The following one-phase regions were found in the DOPA-water system: a reversed hexagonal liquid-crystalline (HII) phase up to about 35 wt % water and a lamellar liquid-crystalline (L alpha) phase between about 55 and 98 wt % water. The area per DOPA molecule was 36-65 A2 in the HII phase (10-40 wt % water) and 69 A2 in the L alpha phase (60 wt % water). DOPS and DOPG with 10-98 wt % water, and DPG with 20-95 wt % water formed an L alpha phase at temperatures between 25 and 55 degrees C. At temperatures above 55 degrees C, DPG with 20 and 30 wt % water formed a mixture of L alpha, HII, and cubic liquid-crystalline phases, the mole percent of lipid forming nonlamellar phases being smaller at 30 wt % water than at 20 wt % water. DPG with 10 wt % water probably formed a mixture of an L alpha phase and at least one nonlamellar liquid-crystalline phase at 25 and 35 degrees C, and a pure HII phase at 45 degrees C and higher temperatures. At water concentrations above about 50 wt % the 23Na quadrupole splitting was constant for all four lipid-water systems studied, implying that the counterion association to the charged lipid aggregates did not change upon dilution. These experimental observations can be described with an ion condensation model but not with a simple equilibrium model. The fraction of counterions located close to the lipid-water interface was calculated to be greater than 95%. The 2H and 23Na NMR quadrupole splittings of 2H2O and sodium counterions, respectively, indicate that the molecular order in the polar head-group region decreases for the L alpha phase in the order DOPA approximately DPG greater than DOPS greater than DOPG.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have